

⁺PtL for Aviation Erneuerbarer Kraftstoff aus CO2, Wasser und Strom für eine saubere Luftfahrt

Necessity and Opportunity to mitigate Climate Change

Klaus Ullrich 18-09-2018

FLECT

Sunfire - Excecutive Summary

- + Leading provider of electrolysers and fuel cells based on Solid Oxide Technology
- + Serving the emerging gigawatt markets for renewable gases and fuels (e-Fuels, e-Gas, e-Hydrogen)
- + Providing solutions for a variety of fuel cell market segments from micro to mini CHP
- + Delivering game-changer products through highest process efficiency and lowest equipment costs

⁺The Objective: Mitigating Climate Change

Paris Climate Agreement: The Future has to be Renewable

+ 85 - 100 % renewables needed to reach Paris Climate Target which still leads to significant negative impacts for human civilization

+ 5 °C: End of human civilization

+ 4 °C: Drought in Europe; China, India and Bangladesh mainly desert; Polynesia vanished; American Southwest largly uninhabitable

+ 3 °C: Forests in the Arctic and the loss of most coastal cities

+ 2 °C: Extinction of the world's tropical reefs, sea-level rise of several meters; abandonment of the Persian Gulf

Bringing the Energy Transition to the Next Level

+ Even in scenarios with large increase of direct electrification liquid energy carrier remain necessary to cover the global energy needs in 2050

Avaiation - The Prime Example of e-Fuel Necessity

Anticipated primary-energy consumption of the EU transport sector

- + To achieve CO₂ reduction targets, fossil fuels need to be phased out
- + Hard-to-electrify sector will make up 50 % or 5,000 PJ in 2050
- + >300 GW of e-Fuels needed in 2050 (>10 GW/a from now)

Calculation based on dena/LBST "E-Fuels -The potential of electricity based fuels for low emission transport in the EU", 2017

⁺The Solution: Power-To-Liquid

CO₂ neutral Aviation - A reality already today!

- + Jet-A Fuel from renewable energy, CO₂ and Water
- + Air to Tank Tank to Air: The perfect CO₂ Recycling Loop
- + No Adaptation of Aircrafts nor Infrastructure needed!

Lokal Production of CO₂-neutral Jet-A

e-Fuel - Highest Potential and Fastest Scale Up

- + Zero cost for infrastructure
- + ASTM certified and drop-in capable (up to 50 %)
- + 85 % reduction in CO₂ emissions compared to fossil fuel
- + Clean combustion: No Sulphur content, reduced particle emissions

Sunfire makes use of existing assets instead of changing processes and infrastructures individually. No disinvest - no stranded assets

Jet-A compatibility of Sunfire e-Fuel tested within **Demo-SPK Project** of the German Federal Ministry of Transport

e-Fuel - The most Ecological Option for Aviation

- + Negligiable water consumption
- + 8x more efficient use of land area compared to biological alternatives

Volumetric representation of water consumption for different renewable Kerosin solutions

Achievable Air-Milage for a A320neo per ha of land

⁺The Technology: Cost Efficient through Sunfire Design

Core USPs of Solid Oxide Electrolysers

- + Highest efficiencies leading to lowest total cost of ownership (TCO)
- + Direct conversion of carbon molecules to provide clean solutions for the energy transition in all sectors
- + Flexible operation for adjustments of output from part load to full load in a short timeframe

Step 1 Improvement: Steam-Electrolysis + RWGS + Synthesis

All values refer to energy conversion necessary for the production of 1 kmol of -CxHy- hydrocarbons RWGS: Reverse-Water-Gas-Shift-Reaction

Step 2 Improvement: Co-Electrolysis + Synthesis

All values refer to energy conversion necessary for the production of 1 kmol of -CxHy- hydrocarbons RWGS: Reverse-Water-Gas-Shift-Reaction

Sunfire PtL Demonstration Plant

- + Sunfire e-Crude production for AUDI AG for e-Diesel, e-Gasoline and e-Wax
- + Start of operation: 2014
- + Max. production volume: 60 t/a e-Crude
- + Audi confirms eco-friendliness (ca. 85 % CO₂ reduction)

⁺Cost Outlook

Cost Projections in Recent Studies

Long-term e-Fuel production costs for "sweet spots" (Fischer-Tropsch)

	year	PtL cost [€/MWh]	electricity [ct/kWh]	full load hours	efficiency
LBST ¹⁾	2016	~ 160	5,5	6.500	~ 45 %
UBA ²⁾	2016	~ 140	4,0	3.750	~ 47 %
LUT ³⁾	2016	~ 86	1,94	6.840	~ 57 %
Dena/LBST ⁴⁾	2017	~ 100	3,4	6.840	~ 48 %
IWES ⁵⁾	2017	~ 115	3,8	6.292	~ 48 %

1)	Ludwig Bölkow Systemtechnik, Renewables in Transport 2050, 2016
2)	UBA, Erarbeitung einer fachlichen Strategie zur Energieversorgung des Verkehrs bis zum
	Jan 2050 (72/2016), 72/2016
3)	LUT, Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global
	Trading Based on Hybrid PV-Wind Power Plants, 2016
4)	Ludwig Bölkow Systemtechnik and Deutsche Energie-Agentur, E-Fuels – The potential of
	electricity based fuels for low emission transport in the EU, 2017
5)	Fraunhofer IWES, "Mittel- und langfristige Potenziale von PTL- und H_2 -Importen aus internationalen EE-Vorzugsregionen", 2017

Ludwig Bölkow Systemtechnik, Renewables in Transport 2050, 2016

Spread of cost projections: 85 – 160 €/MWh

- Studies converge for assumptions +
- Key driver for costs is the price of electricity and operation hours +
- Sunfire agrees with electricity costs, but sees lower full load hours and higher + efficiencies

Cost Projections in Recent Studies

+ Production price range between 100-120 €/MWh (0.9-1.1 €/l) expected

⁺Sunfire Company

Impressions and Overview

Company Facts

Knowhow

- + ~ 100 Employees
- + Skills in Ceramics, Stack + System Production, Engineering, Synthesis Processes, etc.

Patents

+ 46 patent families (e.g. »process patent sunfire« WO/2008/014854)

Recognition

- + Cleantech 100 Company 2014/2015/2017/2018 (only fuel cell + electrolysis company)
- + Fast Company Most Innovative Company of 2016 (with Tesla and Toyota)
- + German Gas Industry's 2016 Innovation & Climate Protection Award
- + Kanthal Award 2017 for solutions in Sustainability, Quality of Life and Energy Efficiency

Revenues

+ Multi-million Euro Revenues in Global Markets since 2011

Investors

Γοται

Impression

Sunfire Headquarter in Dresden

Stack production

e-Fuels plant

Test facilities

⁺Summary

Key Messages

- + Technology is ready for deployment
- + Less sunk investment through re-use of existing refining system and fuel infrastructure
- + Immediate CO₂-reduction potential via blend in existing aviation fleet
- + Economically competitive with renewable fuel solutions and long-term competitiveness with today's fossil gasoline prices
- + Most ecological approach
- + Sufficient renewable power and CO₂ supply in Europe available

THANK YOU! ENERGY EVERYWHERE

Klaus Ullrich, Head of Sales Electrolyser

E: klaus.ullrich@sunfire.de

sunfire GmbH Gasanstaltstraße 2 01237 Dresden Germany

W: www.sunfire.de